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Join our team for this summer!!

Opportunity to be a Data Science Intern at Mayo Clinic Department of ENT (ear-nose-
throat).

Team: me + another data scientist (HDS graduate) + ENT physicians.

Projects: that directly improve clinical practice for patients. Our main current project
uses NLP to improve direct messages to patients after surgery. You’ll also have the
opportunity to attend the Mayo Clinic Al summit

Ideal candidate has a data science background, NLP experience preferred but not
required.

Interested? email me a cover letter and a CV, title the email “Mayo ENT internship
2023”
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The Pareto principle states that for
many outcomes, roughly 80% of
consequences come from 20% of causes.

Source: Wikipedia



Pretrained Networks



Traditional ML vs  Transfer Learning

® |solated, single task learning: 1 e Learning of a new tasks relies on
o Knowledge is not retained or the previous learned tasks:
accumulaFed:Learning is performed o Learning process can be faster, more
w.0. considering past learned accurate and/or need less training data

knowledge in other tasks
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Traditional ML VS

e |[solated, single task learning:
© Knowledge is not retained or
accumulated. Learning is performed
w.0. considering past learned
knowledge in other tasks

Leaming

Dataset 1 = System
Task 1
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Transfer Learning

e Learning of a new tasks relies on

the previous learned tasks:
o Learning process can be faster, more
accurate and/or need less training data

Detect cats in an image

Learning
Dataset 1 >  System
Task 1

Learning
Task 2

Detect dogs in an image




Pretrained Networks

Another way around having a small number of training examples to

learn from is using networks that have been trained on other, bigger
datasets similar to the type of data you have

A pretrained network is a saved network that was previously trained on
a large dataset

If the dataset used to train the network is large enough and big enough,
the features learned by the pretrained network can act as a generic
model to use as a base for your network

This saves an enormous amount of computing time

Pretrained networks can be used for feature extraction and fine-tuning



Pretrained Networks

Commonly used pretrained

Commonly used dataset used to
networks include

train a network is the ImageNet

VGG16 dataset

ResNet 1.4 million labeled images
Inception 1,000 different classes
Inception-ResNet Mostly animals and everyday
Xception

objects

‘.—‘-‘ ar
’, e

_-worklng dog

mammal  —— placental — carnivore —— canine . dog

‘ %‘ ﬁ a € = e

— husky

vehicle craﬁ

— watercraft —— sailingvessel ——  sailboat —  trimaran


http://www.image-net.org/
http://www.image-net.org/

Pretrained Networks
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VGG-16
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https://neurohive.io/en/popular-networks/vgg16/
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https://neurohive.io/en/popular-networks/vgg16/

Feature map Filters

Credit: Eugenia Anello. https://medium.com/dataseries/visualizing-the-feature-maps-and-filters-by-convolutional-neural-
networks-e1462340518e
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https://medium.com/dataseries/visualizing-the-feature-maps-and-filters-by-convolutional-neural-networks-e1462340518e
https://medium.com/dataseries/visualizing-the-feature-maps-and-filters-by-convolutional-neural-networks-e1462340518e

Remember what a convolutional layer does
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Feature Extraction

Consists of using the
representations learned by a
previous network to extract
features from new samples

These features are then run
through a new classifier that is
trained from scratch, and
predictions are made

Prediction Prediction Prediction
Trained in New classifier
classifier assifi (randomly initialized)
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
Input Input Input
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Feature Extraction

For CNNs, the part of the pretrained
network you use is called the
convolutional base, which
contains a series of convolution
and pooling layers

For feature extraction, you keep the
convolutional base of the
pretrained network, remove the
dense / trained classifier layers, and
append new dense and classifier
layers to the convolutional base

Prediction Prediction Prediction
Trained in New classifier
classifier assifi (randomly initialized)
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)

Input

Input

Input
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Feature Extraction

We could also reuse the densely connected classifier as well, but this is not
advised
Representations learned by the convolutional base are likely to be more
generic and thus more reusable
The representations learned by the classifier will be specific to the set of
classes the model was trained on
They will also no longer contain information about where objects are
located in the input image
This makes them especially useless when the object's location is
important
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Feature Extraction

The level of generality depends on the depth of the layer in the model
Early layers extract local, highly generic features, i.e. edges, colors,
textures
Later layers extract more abstract concepts i.e. “cat ear” or “dog eye”

If your new dataset is very different from the dataset that was used to train
the model, you should use only the first few layers for feature extraction
rather than the entire base
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Pretrained Networks in Keras

Xception
Inception V3
ResNet50
VGG16
VGG19
MobileNet
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Inception Models

Filter
concatenation

T

1x1 convolutions

3x3 convolutions

5x5 convolutions

3x3 max pooling

Filter
concatenation
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Previous layer

Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

https://becominghuman.ai/understanding-and-coding-inception-
module-in-keras-eb56e9056b4b



https://becominghuman.ai/understanding-and-coding-inception-module-in-keras-eb56e9056b4b
https://becominghuman.ai/understanding-and-coding-inception-module-in-keras-eb56e9056b4b

conv_base.summary()

Layer (type) Output Shape Param #
L] L]
I nstantl atl n the input_1 (InputLayer) (None, 158, 150, 3) 5]
g blockl_convl (Conv2D) (None, 150, 150, 64) 1792
VG G ] 6 Base blockl_conv2 (Conv2D) (None, 158, 150, 64) 36928
blockl_pool (MaxPooling2D) (None, 75, 75, 64) -]
block2_conwl {(Conv2D} {None, 75, 75, 128) 73856
. B . block2_conv2 {Conv2D) (None, 75, 75, 128) 147584
1 #from keras.applications import VGG16
2 block2_pool (MaxPooling2D) (None, 37, 37, 128) 2]
3 conv_base = tf.keras.applications.VGGl6(weights='imagenet', block3_convl (Conv2D) (None, 37, 37, 256) 295168
4 include top=False,
. - block3_conv2 (Conv2D) (None, 37, 37, 256) 590080
5 input_shape=(150, 150, 3))
block3_conv3 (Conv2D) (None, 37, 37, 256) 590080
block3_pool (MaxPooling2D) (None, 18, 18, 256) %]
block4_convl (Conv2D) (None, 18, 18, 512) 1180160
block4_conw2 (Conv2D} {None, 18, 18, 512) 2359808
blockd_conv3d {Conv2D) (None, 18, 18, 512) 2359808
block4_pool (MaxPooling2D) (None, 9, 9, 512) 2]
block5_convl (Conv2D) (None, 9, 9, 512) 2359808
block5_conw2 (Conv2D) (None, 9, 9, 512) 2359808
block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808
block5_pool (MaxPooling2D) (None, 4, 4, 512) %]

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: @



conv_base.summary()

Layer (type) Output Shape Param #
I nstanti ati n the input_1 (InputLayer) (None, 158, 150, 3) 5]
g blockl_convl (Conv2D) (None, 150, 150, 64) 1792
VG G 16 Base blockl_conv2 (Conv2D) (None, 158, 150, 64) 36928
blockl_pool (MaxPooling2D) (None, 75, 75, 64) -]
block2_conwl {(Conv2D} {None, 75, 75, 128) 73856
. B . block2_conv2 {Conv2D) (None, 75, 75, 128) 147584
1 #from keras.applications import VGG16
2 block2_pool (MaxPooling2D) (None, 37, 37, 128) 2]
3 conv_base = tf.keras.applications.VGGl6(weights='imagenet', block3_convl {Conv2D) (None, 37, 37, 256) 295168
4 include top=False,
. - block3_conv2 (Conv2D) (None, 37, 37, 256) 590080
5 input_shape=(150, 150, 3))
block3_conv3 (Conv2D) (None, 37, 37, 256) 590080
block3_pool (MaxPooling2D) (None, 18, 18, 256) %]
The final layer is a pooling layer and the final output shape from - ———- Nore 15 15 513) I
this base is (4, 4, 512). We need this information when adding PR e RETRET—Ey 5o
layers to the base. This output shape will be the input shape for - ———u-b ERETRET—Ey e
)
the densely connected layer we’ll add to the base. T B T e R e B3] —
block5_convl (Conv2D) (None, 9, 9, 512) 2359808
block5_conw2 (Conv2D) (None, 9, 9, 512) 2359808
block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808
block5_pool (MaxPooling2D) (None, 4, 4, 512) %]

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: @



Using a Pretrained Network

The final output has shape (4, 4, 512)

You have 2 options:
Feature extraction without augmented data: you can run the
convolutional base over the dataset, record its output to a numpy
array, and then use these values as input to a densely connected
classifier

This is fast and cheap to run
It won't allow you to use augmented data

Feature extraction with augmented data: you can extend the
convolutional base by adding dense layers on top and running the
whole model on the input data

This allows data augmentation
This is very computationally expensive
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Transfer learning without
fine-tuning

(Using the convolutional base as a pre-
processing step)

23
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import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(rescale=1./255)
batch_size = 20

def extract features(directory, sample count):

features = np.zeros(shape=(sample count, 4, 4, 512))
labels = np.zeros(shape=(sample count))
generator = datagen.flow_from directory(
directory,
target_size=(150, 150),
batch size=batch size,
class_mode='binary')
i=0
for inputs_batch, labels batch in generator:
features_batch = conv_base.predict(inputs_batch)
features[i * batch_size : (i + 1) * batch_size] = features_batch
labels[i * batch_size : (i + 1) * batch_size] = labels_batch
i+=1
if 1 * batch _size >= sample_ count:
# Note that since generators yield data indefinitely in a loop,
# we must “break®™ after every image has been seen once.
break
return features, labels
train_features, train_labels = extract_ features(train_dir, 1609)
validation_features, validation_labels = extract features(validation_dir, 426)

test_features, test_labels = extract features(test_dir, 392)

Colab notebook

24


https://colab.research.google.com/drive/1pHveYZWIMJKbCHpThmppdC4qnzGOVEa2?usp=sharing

We need to reshape the outputs so we can feed them into a dense layer - recall that dense

layers take in vectors. \

1 train features = np.reshape(train features, (1609, 4 * 4 * 512))
2 validation_ features = np.reshape(validation features, (426, 4 * 4 * 512))
3 test features = np.reshape(test features, (392, 4 * 4 * 512))

1 model = keras.Sequential([

2 layers.Dense(256, activation='relu', input dim=4 * 4 * 512),
3 layers.Dropout(0.5),

4 layers.Dense(l, activation='sigmoid')

51)

6

7 model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=2e-5),

8 loss='binary crossentropy’,

9 metrics=[ 'accuracy'])

10

11 history = model.fit(train_ features, train labels,

12 epochs=30,

13 batch_size=20,

14 validation data=(validation features, validation labels))

25



VVecarladdtheI3asejustﬁkea 1 model = tf.keras.models.Sequential ([

layer to our network ————=2—> conv_base(trainable = False) |
tf.keras.layers.Flatten(),

tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(l, activation='sigmoid')

1)

o W

1 #from keras.applications import VGG16
2
3 conv_base = tf.keras.applications.VGGl6(weights='imagenet',

4 include_top=False,

5 input_shape=(150, 150, 3))
meyes \egpey Output Shape Param #
vgglé (Model) (None, 4, 4, 512) 14714688
flatten (Flatten) (None, 8192) 0
dense 2 (Dense) (None, 256) 2097408
dense 3 (Dense) (None, 1) 257

Total params: 16,812,353

Trainable params:| 2,097,665 |
Non-trainable params: | 14,714,688 |
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Original CNN made from scratch
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Transfer learning with
fine-tuning

(allowing to change the weights in
the convolutional base)
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1 model = tf.keras.models.Sequential([
Colab notebook 2 conv_base,
3 tf.keras.layers.Flatten(),
4 tf.keras.layers.Dense(256, activation='relu'),
5 tf.keras.layers.Dense(l, activation='sigmoid')

6 1)

1 model.summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
vegls (Model)  (Nome, 4, 4, 512) 14714688
flatten (Flatten) (None, 8192) 0

dense 2 (Dense) (None, 256) 2097408
dense 3 (Dense) (None,

=
| =~
8]
(8]
~J

Total params: 16,812,353

Trainable params: 16,812,353
Non-trainable params: 0



https://colab.research.google.com/drive/1pHveYZWIMJKbCHpThmppdC4qnzGOVEa2?usp=sharing

We can add the base just like a
layer to our network

1 model = tf.keras.models.Sequential([

conv_base,

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(l, activation='sigmoid')

o W

1)

1 model.summary()

Model: "sequential 1"

Layer (type) Output Shape Param #
vegls (Model)  (Nome, 4, 4, 512) 14714688
flatten (Flatten) (None, 8192) 0

dense 2 (Dense) (None, 256) 2097408
dense 3 (Dense) (None,

=
| =~
8]
(8]
~J

Total params: 16,812,353
Trainable params: 16,812,353
Non-trainable params: 0
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from keras.preprocessing.image import ImageDataGenerator

1

2

3 train_datagen = ImageDataGenerator(
4 rescale=1./255,

5 rotation_range=40,

6 width_shift_range=0.2,

7 height_shift range=0.2,

8 shear_range=0.2,

9 zoom_range=0.2,
10 horizontal_ flip=True,
11 fill mode='nearest')
12

13 # Note that the validation data should not be augmented! Note: do not run this COde

14 test_datagen = ImageDataGenerator(rescale=1./255)

12 train_generator = train_datagen.flow_from directory( W i t h O Ut a CceSS to a G P U .

17 # This is the target directory

18 train dir,

19 # All images will be resized to 150x150

20 target_size=(150, 150),

21 batch_size=20, B k t C l b b k
22 # Since we use binary crossentropy loss, we need binary labels aC O O a nOte OO
23 class_mode='binary')

24

25 validation_generator = test_datagen.flow_from directory(

26 validation_dir,

27 target_size=(150, 150),

28 batch size=20,

29 class_mode='binary')

30

31 model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=2e-5),
32 loss='binary_crossentropy',

33 metrics=['accuracy'])

34

35)

36 history = model.fit(

37 train generator,

38 steps_per_epoch=81,

39 epochs=30,

40 validation_data=validation_generator,

41 validation_steps=22)


https://colab.research.google.com/drive/1YWL0T8w_n44uzhB6Dloyt6lGmX_gEIXx?usp=sharing

Original CNN made from scratch
with data augmentation
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Let’s compare the two approaches
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First approach:

Freezing the convolutional base
Training only the fully connected layers

Trainable parameters = 2M
Accuracy: ~0.78

0.90
0.85

0.80

Accuracy

0.75

0.70
—— Training Accuracy

0.65 Validation Accuracy

0 5 10 15 20 25 30
Epochs

Second approach:

Conv_base and dense layers both trainable
(we still initialize conv_base with VGG weights)

Trainable parameters = 16M
Accuracy: ~0.69

0.85 WW
0.80 —

-~ Training Accuracy
0.75 Validation Accuracy

0.70

Accuracy

0 5 10 15 20 25 30
Epochs
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With these results, can you think of a third
approach that may work better?
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Some intuition about why the first approach
worked better
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loss

When starting to train, it is less likely that we will fall into a local minimum if we are only training
few parameters (as opposed to trying to simultaneously train the parameters from the dense layer
AND fine-tune the convolutional layers)
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Additional questions

How do we unfreeze some of the convolutional layers?

https://medium.com/@timsennett/unfreezing-the-layers-you-want-to-fine-

tune-using-transfer-learning-1bad8cb72e5d

38


https://medium.com/@timsennett/unfreezing-the-layers-you-want-to-fine-tune-using-transfer-learning-1bad8cb72e5d
https://medium.com/@timsennett/unfreezing-the-layers-you-want-to-fine-tune-using-transfer-learning-1bad8cb72e5d
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